Когда речь заходит о школьной геометрии в старших классах, имя Л.С. Атанасяна всплывает одним из первых. Его учебник для 10–11 классов — это не просто набор параграфов и задач, а настоящий проводник, который уже много десятилетий помогает поколениям учеников осваивать непростой, но увлекательный мир стереометрии. Почему же он выдержал испытание временем и остается актуальным?
Этот учебник подкупает своей кристальной ясностью и строгой логикой. Он выстраивает здание стереометрии кирпичик за кирпичиком, начиная с фундаментальных аксиом и постепенно подводя к сложным пространственным конструкциям, векторам и координатному методу. Чувствуется продуманность каждого раздела, а система упражнений в конце глав позволяет не просто закрепить материал, но и по-настоящему погрузиться в тему, решая задачи разного калибра – от базовых до требующих нетривиального подхода.
Одно из главных достоинств пособия — это удивительный баланс между сухой теорией и живой практикой. Каждое определение, каждая теорема сопровождается наглядными, хоть и черно-белыми, чертежами, которые помогают «увидеть» пространственные отношения. Задачи подобраны мастерски: они не только тренируют применение формул, но и развивают то самое «геометрическое зрение», без которого стереометрия остается лишь набором абстракций. Разделы вроде параллельности или перпендикулярности прямых и плоскостей демонстрируют это особенно ярко, предлагая как классические доказательства, так и задачи, над которыми придется поломать голову.
Нельзя не отметить и его роль в подготовке к выпускным экзаменам. Учебник Атанасяна – это отличная база для успешной сдачи ЕГЭ, особенно в части заданий, связанных с построением сечений многогранников и применением координатно-векторного метода. Многие задачи прямо перекликаются с экзаменационным форматом.
Язык изложения, несмотря на строгость предмета, остается удивительно доступным. Даже такие темы, как уравнения плоскости или прямой в пространстве, вводятся постепенно, опираясь на уже усвоенные понятия планиметрии и алгебры. Это создает ощущение непрерывности и логичности учебного процесса. А приятным бонусом в некоторых изданиях служат исторические справки, добавляющие контекст и показывающие, какой долгий путь прошла геометрия от Евклида до наших дней.
Как максимально эффективно работать с этим учебником? Ученикам стоит взять за правило: сначала вдумчиво разобрать примеры, предложенные автором, понять логику решения, а уже потом переходить к самостоятельной работе над задачами. Учителя найдут в нем надежный каркас как для традиционных уроков, так и для более творческих форм работы, например, организации проектов по созданию моделей геометрических тел. Родителям, помогающим своим детям, стоит обратить внимание на «Вопросы для повторения» – это отличный диагностический инструмент для выявления пробелов в знаниях.
Конечно, идеальных учебников не бывает. Кому-то может не хватать ярких цветных иллюстраций, а в редких тиражах встречаются досадные опечатки в ответах (всегда лучше перепроверить с преподавателем!). Но эти мелкие шероховатости ничуть не умаляют его достоинств.
В конечном итоге, учебник Атанасяна — это больше, чем просто источник информации. Это школа мышления. Он учит не просто находить ответы, а выстраивать логические цепочки, видеть пространственные связи и анализировать условия задачи. Это навык, который пригодится далеко за пределами школьного курса геометрии.
ГДЗ по Геометрии 11 класс Задание 14 Номер 18 Атанасян — Подробные Ответы
Ребро AD пирамиды DABC перпендикулярно к плоскости АВС. Найдите расстояние от вершины А до плоскости, проходящей через середины рёбер AB, AC и AD, если AD= \(2\sqrt{5}\), AB= AC= 10, BC = \(4\sqrt{5}\).
Решение:
1) В равнобедренном ΔABC: AB = AC, CE = BE, AE ⊥ BC; AE = \(\sqrt{AC^2 — CE^2}\) = \(\sqrt{10^2 — 6^2}\) = \(\sqrt{64}\) = 8;
2) В равнобедренном ΔADE: DE = AE, AF = DF, EF ⊥ AD; EF = \(\sqrt{AE^2 — AF^2}\) = \(\sqrt{8^2 — 6^2}\) = \(\sqrt{28}\) = 2\(\sqrt{7}\).
Ответ: 2\(\sqrt{7}\).
Дано:
— Четырехугольник ABCD, где AB = AC = 10, DB = DC = 10, BC = DA = 12.
— Необходимо найти длину отрезка EF.
Решение:
1) Рассмотрим равнобедренный треугольник ABC, где AB = AC = 10 и BC = DA = 12.
2) Найдем длину высоты AE, опущенной из вершины A на сторону BC. Используя теорему Пифагора, имеем:
AE = \(\sqrt{AB^2 — BE^2}\) = \(\sqrt{10^2 — 6^2}\) = \(\sqrt{64}\) = 8.
3) Теперь рассмотрим равнобедренный треугольник ADE, где DE = AE = 8 и AF = DF.
4) Найдем длину отрезка EF, используя теорему Пифагора:
EF = \(\sqrt{AE^2 — AF^2}\) = \(\sqrt{8^2 — 6^2}\) = \(\sqrt{28}\) = 2\(\sqrt{7}\).
Ответ: 2\(\sqrt{7}\).
Исследовательские задачи
Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.