Когда речь заходит о школьной геометрии в старших классах, имя Л.С. Атанасяна всплывает одним из первых. Его учебник для 10–11 классов — это не просто набор параграфов и задач, а настоящий проводник, который уже много десятилетий помогает поколениям учеников осваивать непростой, но увлекательный мир стереометрии. Почему же он выдержал испытание временем и остается актуальным?
Этот учебник подкупает своей кристальной ясностью и строгой логикой. Он выстраивает здание стереометрии кирпичик за кирпичиком, начиная с фундаментальных аксиом и постепенно подводя к сложным пространственным конструкциям, векторам и координатному методу. Чувствуется продуманность каждого раздела, а система упражнений в конце глав позволяет не просто закрепить материал, но и по-настоящему погрузиться в тему, решая задачи разного калибра – от базовых до требующих нетривиального подхода.
Одно из главных достоинств пособия — это удивительный баланс между сухой теорией и живой практикой. Каждое определение, каждая теорема сопровождается наглядными, хоть и черно-белыми, чертежами, которые помогают «увидеть» пространственные отношения. Задачи подобраны мастерски: они не только тренируют применение формул, но и развивают то самое «геометрическое зрение», без которого стереометрия остается лишь набором абстракций. Разделы вроде параллельности или перпендикулярности прямых и плоскостей демонстрируют это особенно ярко, предлагая как классические доказательства, так и задачи, над которыми придется поломать голову.
Нельзя не отметить и его роль в подготовке к выпускным экзаменам. Учебник Атанасяна – это отличная база для успешной сдачи ЕГЭ, особенно в части заданий, связанных с построением сечений многогранников и применением координатно-векторного метода. Многие задачи прямо перекликаются с экзаменационным форматом.
Язык изложения, несмотря на строгость предмета, остается удивительно доступным. Даже такие темы, как уравнения плоскости или прямой в пространстве, вводятся постепенно, опираясь на уже усвоенные понятия планиметрии и алгебры. Это создает ощущение непрерывности и логичности учебного процесса. А приятным бонусом в некоторых изданиях служат исторические справки, добавляющие контекст и показывающие, какой долгий путь прошла геометрия от Евклида до наших дней.
Как максимально эффективно работать с этим учебником? Ученикам стоит взять за правило: сначала вдумчиво разобрать примеры, предложенные автором, понять логику решения, а уже потом переходить к самостоятельной работе над задачами. Учителя найдут в нем надежный каркас как для традиционных уроков, так и для более творческих форм работы, например, организации проектов по созданию моделей геометрических тел. Родителям, помогающим своим детям, стоит обратить внимание на «Вопросы для повторения» – это отличный диагностический инструмент для выявления пробелов в знаниях.
Конечно, идеальных учебников не бывает. Кому-то может не хватать ярких цветных иллюстраций, а в редких тиражах встречаются досадные опечатки в ответах (всегда лучше перепроверить с преподавателем!). Но эти мелкие шероховатости ничуть не умаляют его достоинств.
В конечном итоге, учебник Атанасяна — это больше, чем просто источник информации. Это школа мышления. Он учит не просто находить ответы, а выстраивать логические цепочки, видеть пространственные связи и анализировать условия задачи. Это навык, который пригодится далеко за пределами школьного курса геометрии.
ГДЗ по Геометрии 11 класс Задание 14 Номер 15 Атанасян — Подробные Ответы
Высота правильной треугольной пирамиды равна 20, а медиана её основания равна 6. Найдите тангенс угла, который боковое ребро образует с плоскостью основания.
Решение:
1) В пирамиде ABCD: DH ⊥ ABC, D → H.
2) В правильном ΔABC: HE = 1/2 AE, AH : HE = 2 : 1.
\(AH = \frac{2}{3}AE = \frac{2}{3} \cdot 6 = 4\)
3) В прямоугольном ΔADH:
\(\tan A = \frac{DH}{AH} = \frac{20}{4} = 5\)
Ответ: 5.
Решение:
Дано: пирамида ABCD, где DH ⊥ ABC, DH = 20, CE = BE, AE = 6. Требуется найти tg DAH.
Шаг 1: Рассмотрим пирамиду ABCD. Согласно условию, прямая DH перпендикулярна плоскости ABC, то есть DH ⊥ ABC.
Шаг 2: В прямоугольном треугольнике ABC, где AH = 1/2 AE, имеем:
\(AH = \frac{1}{2}AE = \frac{1}{2} \cdot 6 = 3\)
\(HE = AE — AH = 6 — 3 = 3\)
Шаг 3: Используя подобие треугольников, найдем соотношение сторон:
\(AH : HE = 2 : 1\)
\(AH = 2 \cdot HE\)
Шаг 4: Найдем длину отрезка AH:
\(AH = 2 \cdot HE = 2 \cdot 3 = 6\)
Шаг 5: В прямоугольном треугольнике ADH вычислим тангенс угла DAH:
\(\tan DAH = \frac{DH}{AH} = \frac{20}{6} = \frac{20}{6} = 5\)
Ответ: 5.
Исследовательские задачи
Любой навык лучше отрабатывать самостоятельной практикой, и решение задач — не исключение. Прежде чем обратиться к подсказкам, стоит попробовать справиться с заданием, опираясь на свои знания. Если дойти до конца удалось — проверить ответ и в случае расхождений сверить своё решение с правильным.